数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/nSn(n=1,2,3,…).证明: (Ⅰ)数列{Snn}是等比数列; (Ⅱ)Sn+1=4an.
问题描述:
数列{an}的前n项和记为Sn,已知a1=1,an+1=
Sn(n=1,2,3,…).证明:n+2 n
(Ⅰ)数列{
}是等比数列;Sn n
(Ⅱ)Sn+1=4an.
答
(I)证:由a1=1,an+1=n+2nSn(n=1,2,3,),知a2=2+11S1=3a1,S22=4a12=2,S11=1,∴S22S11=2又an+1=Sn+1-Sn(n=1,2,3,…),则Sn+1-Sn=n+2nSn(n=1,2,3,),∴nSn+1=2(n+1)Sn,Sn+1n+1Snn=2(n=1...