求证:(tanx*sinx)/(tanx-sinx)=(1+cosx)/sinx
问题描述:
求证:(tanx*sinx)/(tanx-sinx)=(1+cosx)/sinx
答
tanx=sinx/cosx原式=[(sinx/cox)*sinx]/[(sinx/cosx)-sinx]=sinx/(1-cosx)=[sinx*(1+cosx)]/[(1-cosx)*(1+cosx)]=[sinx*(1+cosx)]/[sinx*sinx]=(1+cosx)/sinx