已知函数f(x)=x3+2bx2+cx+1的两个极值点为x1,x2,x1∈[-2,-1],x2∈[1,2],求f(-1)的取值范围.
问题描述:
已知函数f(x)=x3+2bx2+cx+1的两个极值点为x1,x2,x1∈[-2,-1],x2∈[1,2],求f(-1)的取值范围.
答
∵f(x)=x3+2bx2+cx+1,∴f′(x)=3x2+4bx+c,依题意知,方程f′(x)=0有两个根x1、x2,且x1∈[-2,-1],x2∈[1,2]等价于f′(-2)≥0,f′(-1)≤0,f′(1)≤0,f′(2)≥0,由此得b,c满足的约束条件为f/(...