已知O为平面直角坐标系的原点,过点M(-2,0)的直线与圆x^2+y^2=1交于P,Q两点
已知O为平面直角坐标系的原点,过点M(-2,0)的直线与圆x^2+y^2=1交于P,Q两点
若向量OP*向量向量OQ=-1/2,求直线l的方程
若三角形OMP与三角形OPQ的面积相等求直线l的斜率
已知O为平面直角坐标系的原点,过点M(-2,0)的直线与圆x²+y²=1交于P,Q两点;若向量OP▪OQ=-1/2,求直线L的方程;若△OMP与△OPQ的面积相等,求直线L的斜率.
设过点M(-2,0)的直线L的方程为y=k(x+2),代入园的方程得:
x²+k²(x+2)²-1=(1+k²)x²+4k²x+4k²-1=0;设P(x₁,y₁);Q(x₂,y₂);则依维达定理,有等式:
x₁+x₂=-4k²/(1+k²)
x₁x₂=(4k²-1)/(1+k²)
y₁y₂=[k(x₁+2)][k(x₂+2)]=k²[x₁x₂+2(x₁+x₂)+4]=k²[(4k²-1)/(1+k²)-8k²/(1+k²)+4]=3k²/(1+k²)
y₁+y₂=k(x₁+2)+k(x₂+2)=k(x₁+x₂)+4k=-4k³/(1+k²)+4k=4k/(1+k²)
故OP▪OQ=x₁x₂+y₁y₂=(4k²-1)/(1+k²)+3k²/(1+k²)=(7k²-1)/(1+k²)=-1/2
即有14k²-2=-1-k²,15k²=1,故k=±√(1/15);于是得L的方程为y=±[√(1/15)](x+2).
要使△OMP与△OPQ的面积相等,只需使点P成为MQ的中点就可以了.故由中点坐标公式得:
x₁=(x₂-2)/2,即x₂=2x₁+2,
y₁=y₂/2,即y₂=2y₁,;
y₁+y₂=3y₁=4k/(1+k²),故y₁=4k/[3(1+k²)];
△OMP的面积=(1/2)×2y₁=y₁=4k/[3(1+k²)];
△OPQ的面积=(1/2)∣PQ∣h,其中h是原点到直线L的距离,即△OPQ在PQ边上的高;弦长
∣PQ∣=√{(1+k²)[(x₁+x₂)²-4x₁x₂]}=√{(1+k²)[16k⁴/(1+k²)²-4(4k²-1)/(1+k²)]}=√[(4-12k²)/(1+k²)];
h=∣2k∣/√(1+k²);
故△OPQ的面积=(1/2)√[(4-12k²)/(1+k²)][∣2k∣/√(1+k²)];
于是得4k/[3(1+k²)]=(1/2)√[(4-12k²)/(1+k²)][∣2k∣/√(1+k²)]
化简得 16k²=9k²(4-12k²)/(1+k²)
即有16(1+k²)=9(4-12k²),124k²=20,故得k²=20/124=5/31,于是得k=±√(5/31)