过X轴上一点P向圆C:X^2+(Y-2)^2=1做切线,切点分别为A,B,则三角形ABP的面积的最小值是多少?
问题描述:
过X轴上一点P向圆C:X^2+(Y-2)^2=1做切线,切点分别为A,B,则三角形ABP的面积的最小值是多少?
答
如图,a=FP=√(x²+4),b=BP=√(a²-1)=√(x²+3)
sinα=1/a, cosα=b/a,
S⊿ABP=bsinα·bcosα=b³/a²=(b²/a²)·b
b²/a²=(x²+3)/(x²+4)=1-1/(x²+4).在x=0有最小值3/4.
b=√(x²+3)也在x=0有最小值√3.
∴当x=0(P,O重合)时.S⊿ABP=3√3/4为最小值.