已知函数f(x)=x2-2x-8,g(x)=2x2-4x-16, (1)求不等式g(x)<0的解集; (2)若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.
问题描述:
已知函数f(x)=x2-2x-8,g(x)=2x2-4x-16,
(1)求不等式g(x)<0的解集;
(2)若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.
答
由g(x)=2x2-4x-16<0,得x2-2x-8<0,即(x+2)(x-4)<0,解得-2<x<4.所以不等式g(x)<0的解集为{x|-2<x<4};(2)因为f(x)=x2-2x-8,当x>2时,f(x)≥(m+2)x-m-15成立,则x2-2x-8≥(m+2)x-m-15...