如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE=PF等于
问题描述:
如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE=PF等于
答
假设AC、BD的交点是O,连接PO
S△APO=(1/2)AO*PE
S△DPO=(1/2)DO*PF
所以 PE+PF=2S△APO/AO + 2S△DPO/DO
根据勾股定理,AO=DO=5/2
所以 PE+PF=(4/5)*(S△APO+S△DPO)=(4/5)*S△AOD=(4/5)*(3×4÷4)=12/5