两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,过M作MH⊥AB于H,求证: (1)平面MNH∥平面BCE; (2)MN∥平面BCE.

问题描述:

两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,过M作MH⊥AB于H,求证:

(1)平面MNH∥平面BCE;
(2)MN∥平面BCE.

证明:(1)在平面ABCD内,∵MH⊥AB,BC⊥AB,∴MH∥BC,∵MH⊄平面BCE,BC⊂平面BCE,∴MH∥平面BCE.∵MH∥BC,∴AMMC=AHHB.∵AM=FN,AC=FB,∴MC=NB.∴AMMC=FNNB.∴AHHB=FNNB,∴NH∥AF∥BE.又∵NH⊄平面B...