两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,过M作MH⊥AB于H,求证:(1)平面MNH∥平面BCE;(2)MN∥平面BCE.
问题描述:
两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,过M作MH⊥AB于H,求证:
(1)平面MNH∥平面BCE;
(2)MN∥平面BCE.
答
知识点:熟练掌握面面平行的判定定理和性质定理是解题的关键.
证明:(1)在平面ABCD内,∵MH⊥AB,BC⊥AB,∴MH∥BC,
∵MH⊄平面BCE,BC⊂平面BCE,
∴MH∥平面BCE.
∵MH∥BC,
∴
=AM MC
.AH HB
∵AM=FN,AC=FB,∴MC=NB.
∴
=AM MC
.FN NB
∴
=AH HB
,∴NH∥AF∥BE.FN NB
又∵NH⊄平面BCE,BE⊂平面BCE,
∴NH∥平面BCE.
∵MH∩NH=H,
∴平面MNH∥平面BCE.
(2)由(1)可知:平面MNH∥平面BCE.
而MN⊂平面MNH,
∴MN∥平面BCE.
答案解析:(1)利用面面平行的判定定理即可证明;
(2)利用面面平行的性质定理即可证明.
考试点:直线与平面平行的判定;平面与平面垂直的判定.
知识点:熟练掌握面面平行的判定定理和性质定理是解题的关键.