等差数列{an}中,已知a1=2,a1+a2+a3=12. 求:(2)令bn=2^a n ,求数列{bn}的前n项和Sn
问题描述:
等差数列{an}中,已知a1=2,a1+a2+a3=12. 求:(2)令bn=2^a n ,求数列{bn}的前n项和Sn
答
1
a1+a2+a3=12
2a2=a1+a3
a2=4
a1=2
d=2
an=a1+(n-1)d
=2+2(n-1)
=2n
2
bn=2^2n=4^n
q=4
Sn=b1(1-q^n)/(1-q)
=4(1-4^n)/(1-4)
=4(4^n-1)/3
答
a1=2
a2=12/3=4
d=4-2=2
an=2+(n-1)x2=2n
bn=2^an=2^2n
Sn=2^2+2^4+...+2^2n
=(2^2-2^2n*4)/(1-4)
=4/3(4^n-1)