数列an的前n项和为Sn,Sn=4an-3,①证明an是等比数列②数列bn满足b1=2,bn+1=an+bn.求数列bn通项公式
问题描述:
数列an的前n项和为Sn,Sn=4an-3,①证明an是等比数列②数列bn满足b1=2,bn+1=an+bn.求数列bn通项公式
关键是第二问~
答
1
an=Sn-Sn-1=4an-4an-1
4an-1=3an
an/an-1=4/3
a1=4a1-3,a1=1
an=1*(4/3)^(n-1)
2
b1=2
b2=a1+b1=3
b3=b2+a2=2+1+(4/3)
b4=2+1+4/3+(4/3)^2
bn=2+(1-(4/3)^(n-1))/(1-4/3)=2+3((4/3)^(n-1)-1)