已知3个关于x的一元二次方程ax2+bx+c=0,bx2+cx+a=0cx2+ax+c=0(a乘b乘c不为0)恰好有一个实数根,
问题描述:
已知3个关于x的一元二次方程ax2+bx+c=0,bx2+cx+a=0cx2+ax+c=0(a乘b乘c不为0)恰好有一个实数根,
则代数式(b+c)/2a的值.
答
已知3个关于x的一元二次方程ax2+bx+c=0,bx2+cx+a=0cx2+ax+c=0
设这个实根为x‘
则ax’^2+bx'+c=0 (1)
bx'^2+cx'+a=0 (2)
cx'^2+ax'+c=0 (3)
(1)+(2)+(3) (a+b+c)(x'2+x'+1)=0
因x'^2+x'+1>0
所以a+b+c=0 b+c=-a
则代数式(b+c)/2a=(-a)/2a=-2