设函数y=y(x)由方程积分(y-0) e^tdt+积分(x-0) costdt=0所确定,求dy/dx

问题描述:

设函数y=y(x)由方程积分(y-0) e^tdt+积分(x-0) costdt=0所确定,求dy/dx

原方程为:e^t|(0→y)+sint|(0→x)=0
e^y-1+sinx=0
两边对x求导:y'e^y+cosx=0
y'=-cosx/e^y