如图所示,在△ABC中,∠CBA=90°,D是AB延长线上的一点,E在BC上,连接DE并延长交AC于点F,EF=FC,求证:AF=DF.

问题描述:

如图所示,在△ABC中,∠CBA=90°,D是AB延长线上的一点,E在BC上,连接DE并延长交AC于点F,EF=FC,求证:AF=DF.

证明:∵EF=FC,
∴∠FEC=∠C,
∠BED=∠FEC,
∴∠C=∠BED,
∵∠CBA=∠CBD=90°,
∴∠D+∠BED=∠D+∠C=90°,
又∵∠A+∠C=90°,
∴∠A=∠D,
AF=DF.