设Sn为数列{an}的前n项和,Sn=kn2+n,n∈N*,其中k是常数.(Ⅰ)求a1及an;(Ⅱ)若对于任意的m∈N*,am,a2m,a4m成等比数列,求k的值.
问题描述:
设Sn为数列{an}的前n项和,Sn=kn2+n,n∈N*,其中k是常数.
(Ⅰ)求a1及an;
(Ⅱ)若对于任意的m∈N*,am,a2m,a4m成等比数列,求k的值.
答
知识点:本题主要考查数列等比关系的确定和求数列通项公式的问题.当分n=1和n>1两种情况求通项公式的时候,最后要验证当n=1时,通项公式是否成立.
解析:(1)当n=1,a1=S1=k+1,n≥2,an=Sn-Sn-1=kn2+n-[k(n-1)2+(n-1)]=2kn-k+1(*).经检验,n=1(*)式成立,∴an=2kn-k+1.(2)∵am,a2m,a4m成等比数列,∴a2m2=ama4m,即(4km-k+1)2=(2km-k+1)(8km...
答案解析:(1)先通过求a1=S1求得a1,进而根据当n>1时an=Sn-Sn-1求出an,再验证求a1也符合此时的an,进而得出an
(2)根据am,a2m,a4m成等比数列,可知a2m2=ama4m,根据(1)数列{an}的通项公式,代入化简即可.
考试点:等比关系的确定;数列递推式.
知识点:本题主要考查数列等比关系的确定和求数列通项公式的问题.当分n=1和n>1两种情况求通项公式的时候,最后要验证当n=1时,通项公式是否成立.