设x0=1,x(n+1)=(xn+2)/(xn+1)(n>=0),证明数列{xn}收敛.
问题描述:
设x0=1,x(n+1)=(xn+2)/(xn+1)(n>=0),证明数列{xn}收敛.
答
x(n+1)=(xn+2)/(xn+1)(n>=0),X(n+2)=[X(n+1)]^2
设x0=1,x(n+1)=(xn+2)/(xn+1)(n>=0),证明数列{xn}收敛.
x(n+1)=(xn+2)/(xn+1)(n>=0),X(n+2)=[X(n+1)]^2