已知点M为抛物线y2=4x上一点,若点M到直线l1:x=-1的距离为d1,点M到直线l2:3x-4y+12=0的距离为d2,则d1+d2的最小值为_.
问题描述:
已知点M为抛物线y2=4x上一点,若点M到直线l1:x=-1的距离为d1,点M到直线l2:3x-4y+12=0的距离为d2,则d1+d2的最小值为______.
答
由抛物线的定义d1=MF,M到直线l2:3x-4y+12=0的距离d2=MN,其中N为垂足,则d1+d2≥FM≥
=3,当且仅当N,M,F三点共线时取到等号.|3×1−4×0+12| 5
故答案为3.