若一直线与抛物线y2=2px(p>0)交于A、B两点,且OA⊥OB,点O在直线AB上的射影为D(2,1),求抛物线方程.

问题描述:

若一直线与抛物线y2=2px(p>0)交于A、B两点,且OA⊥OB,点O在直线AB上的射影为D(2,1),求抛物线方程.

设A(x1,y1)B(x2,y2)由于OD斜率为12,OD⊥AB则AB斜率为-2,故直线AB方程为2x+y-5=0…①将(1)代入抛物线方程得y2+py-5p=0则y1y2=-5p因(y1)2=2px1;(y2)2=2px2则(y1y2)2=4(p2)x1x2故x1x2=254因OA⊥OB则...