由双曲线x²/9-y²/4=1的一点P与左、右两焦点F1、F2构成△PF1F2,求△PF1F2的内切圆与边F1F2

问题描述:

由双曲线x²/9-y²/4=1的一点P与左、右两焦点F1、F2构成△PF1F2,求△PF1F2的内切圆与边F1F2
的切点坐标.

设三角形PF1F2的内切圆切F1F2于M,切PF1于N,切PF2于Q,
则|PN|=|PQ|,|F1N|=|F1M|,|F2M|=|F2Q|.
∵P在双曲线x²/9-y²/4=1上,
∴|PF1|-|PF2|=|MF1|-|MF2|=土6,
|MF1|+|MF2|=2√13,
解得|MF1|=√13+3,|MF2|=√13-3,
或|MF1|=√13-3,|MF2|=√13+3.
而F1(-√13,0),
∴M(3,0),或(-3,0),为双曲线的顶点.