已知圆O的半径为1,PA,PB为该圆的两条切线.A,B为两切点.那么(向量)PA×(向量)PB的最小值为多少?谢
问题描述:
已知圆O的半径为1,PA,PB为该圆的两条切线.A,B为两切点.那么(向量)PA×(向量)PB的最小值为多少?谢
答
已经答过,现在复制如下:设PA与PO的夹角为a,则|PA|=|PB|=1/tan(a)y=PA.PB=|PA|*|PB|*cos(2a)=1/[(tana)^2] *cos(2a)=(cosa)^2/[(sina)^2] * cos2a=[(1+cos2a)/(1-cos2a)] *cos2a(用到(cosa)^2=(1+cos2a)/2(sina)^2=(...