等差数列{an}的前项n的和为Sn,存在常数,使得an+Sn=An^2+Bn+C A=?B、?=C=?

问题描述:

等差数列{an}的前项n的和为Sn,存在常数,使得an+Sn=An^2+Bn+C A=?B、?=C=?

证明,据题意,{an}为等差数列,不妨假设它的首项为a1,公差为k.所以:Sn=n*a1+k*n*(n-1)/2an+Sn=a1+(n-1)k+n*a1+k*n*(n-1)/2=a1+nk-k+na1+(k/2)n^2-kn/2=(k/2)n^2+(a1+k/2)n+(a1+k)据题意,存在常数ABC对所有n成立...