在三角形⊿ABC中,a/c=√3-1,cotC/cotB=2a-c/c,求A、B、C

问题描述:

在三角形⊿ABC中,a/c=√3-1,cotC/cotB=2a-c/c,求A、B、C

cotC/cotB=cosCsinB/(cosBsinC).所以
2a/c=1+cosCsinB/(cosBsinC)=(cosCsinB+cosBsinC)/(cosBsinC)=sin(B+C)/(cosBsinC)=sinA/(sinCcosB)=a/(c*cosB)
所以得到cosB=1/2.B=60°
(√3+1)/2=c/a=sinC/sinA=sin(120°-A)/sinA=(√3/2)cotA+1/2.由此得cotA=1.A=45°
所以C=75度