设数列{An}的首项是A1=A≠1/4,且A(n+1)=1/2*An(当n为偶数时)或An+1/4(当n为奇数时)
问题描述:
设数列{An}的首项是A1=A≠1/4,且A(n+1)=1/2*An(当n为偶数时)或An+1/4(当n为奇数时)
记Bn=A(2n-1)-1/4,n=1、2、3……(1)求A2、A3(2)判断{Bn}是否为等比数列,并证明你的结论
答
1)求A2、A3
A2=A1+1/4=A+1/4
A3=1/2A2=1/2A+1/8
2)B(n+1)/Bn
=[A(2n+1)-1/4]/[A(2n-1)-1/4]
=(1/2*A2n-1/4)/[1/2*A(2n-2)-1/4]
=(A2n-1/2)/[A(2n-2)-1/2]
=[A(2n-1)+1/4-1/2]/[A(2n-3)+1/4-1/2]
=[A(2n-1)-1/4]/[A(2n-3)-1/4]
=Bn/B(n-1)
因为B(n+1)/Bn=Bn/B(n-1),且B1=A3-1/4=1/2A-1/8≠0
所以Bn为等比数列