已知f(x)=loga(ax2-x)(a>0,且a≠1)在区间[2,4]上是增函数,求实数a的取值范围.
问题描述:
已知f(x)=loga(ax2-x)(a>0,且a≠1)在区间[2,4]上是增函数,求实数a的取值范围.
答
设t=ax2-x=a(x-12a)2-14a,当a>1时,由于函数t=ax2-x在[2,4]是增函数,且函数t大于0,故函数f (x)=loga(ax2-x)在[2,4]是增函数,满足条件.当 1>a>0时,由题意可得 函数t=ax2-x在[2,4]应是减函数,...