数列{an}中,a1=1,2Sn^2=2anSn-an(n≥2,n属于N*),求an

问题描述:

数列{an}中,a1=1,2Sn^2=2anSn-an(n≥2,n属于N*),求an

a1=1
因 a(n+1)=S(n+1_)-Sn
故 2S(n+1)^2=(2S(n+1)-1)(S(n+1)-Sn)=2S(n+1)^2-2S(n+1)Sn-S(n+1)+Sn
化简得:S(n+1)-Sn=2SnS(n+1)
所以 1/(Sn+1)-1/Sn=2
即数列{1/Sn}是首项为1,公差为2的等差数列,
所以 1/Sn=2n-1, Sn=1/(2n-1)
所以 n=1时 an=1
n≥2,n属于N*时 an=1/(2n-1)-1/(2n-3)=-2/(2n-1)(2n-3)

因 an=Sn-S(n-1)故 2Sn^2=(2Sn-1)(Sn-S(n-1))=2Sn^2-2SnS(n-1)-Sn+S(n-1)化简得:S(n-1)-Sn=2SnS(n-1)所以 1/Sn-1/S(n-1)=2即数列{1/Sn}是公差为2的等差数列所以 1/Sn=2n-1,Sn=1/(2n-1)所以 n≥2,n属于N*时 an=1/(2n...