函数f(x)=1/(4^x+m) (m>0),x1,x2属于R,当x1+x2=1时,f(x1)+f(x2)=1/2,求m的值(2)已知数列{an}满足an=f(0)+f(1/n)+f(2/n)+……+f[(n-1)/n]+f(1),求an“=[f(0/2k)+f(2k/2k)]+[f(1/2k)+f((2k-1)/2k)]+ … +[f((k-1)/2k)+f((k+1)/2k)]+f(k/2k) =1/2+1/2+ … +1/2+f(1/2) ………… 有k个1/2 ”

问题描述:

函数f(x)=1/(4^x+m) (m>0),x1,x2属于R,当x1+x2=1时,f(x1)+f(x2)=1/2,求m的值
(2)已知数列{an}满足an=f(0)+f(1/n)+f(2/n)+……+f[(n-1)/n]+f(1),求an
“=[f(0/2k)+f(2k/2k)]+[f(1/2k)+f((2k-1)/2k)]+ … +[f((k-1)/2k)+f((k+1)/2k)]+f(k/2k)
=1/2+1/2+ … +1/2+f(1/2) ………… 有k个1/2 ”

1.令x1=x2=1/2,f(1/2)=1/(2+m),f(1/2)+f(1/2)=1/2 因此1/(2+m)=1/4,m=2 2.x1+x2=1时,f(x1)+f(x2)=1/2,f(1/2)=1/4,an=f(0)+f(1/n)+f(2/n)+.+f(n/n) 因此当n为偶数2k时,k=n/2:an=a(2k) =[f(0/2k)+f(2k/2k)]+[f(1/2k)+...