过椭圆4x的平方+2y的平方=1的一个焦点F1的直线与椭圆相较于A,B两点,则A,B与椭圆的另一个焦点F2构成的三角形ABF2的周长为多少
问题描述:
过椭圆4x的平方+2y的平方=1的一个焦点F1的直线与椭圆相较于A,B两点,则A,B与椭圆的另一个焦点F2构成的三角
形ABF2的周长为多少
答
y²/(√2/2)² + x²/(1/2)² = 1
根据椭圆定义:平面上到两定点(焦点)的距离之和为定值(2a)的点之轨迹.
∴|AF1|+|AF2|=|BF1|+|BF2|=2a=√2
∴|AF1|+|BF1|+|AF2|+|BF2|=2√2
即C=|AB|+|AF2|+|BF2|=2√2