已知函数fx=(1-x)/ax+inx :1:fx是(1,+∞)上是增函数,求正实数a的取值范围2:当a=1时在{1/2,2}上的最大值和最小值

问题描述:

已知函数fx=(1-x)/ax+inx :
1:fx是(1,+∞)上是增函数,求正实数a的取值范围2:当a=1时在{1/2,2}上的最大值和最小值

1 f(x)=(1-x)/ax+lnx =1/(ax)-1/a+lnx,a是正实数,定义域x>0f'(x)=1/x-1/(ax^2),当x=1/a时,f'(x)=0,当00所以当x∈[1/a,inf]时,函数是增函数,所以当1/a≤1即a≥1时,满足f(x)是(1,+∞)上是增函数故a≥12a=1时,f(x)=1/x+...