已知函数f(x)=log2(1+x/1-x),求证f(x1)+f(x2)=f[(x1+x2)/(1+x1x2)
问题描述:
已知函数f(x)=log2(1+x/1-x),求证f(x1)+f(x2)=f[(x1+x2)/(1+x1x2)
答
f(x1)+f(x2)=log2[(1+x1)/(1-x1)]+log2[(1+x2)/(1-x2)]
=log2[(1+x1)(1+x2)/(1-x1)(1-x2)]
f[(x1+x2)/(1+x1x2)]
=log2[1+(x1+x2)/(1+x1x2)]/[1-(x1+x2)/(1+x1x2)]
就是要证明(1+x1)(1+x2)/(1-x1)(1-x2)=[1+(x1+x2)/(1+x1x2)]/[1-(x1+x2)/(1+x1x2)
1+(x1+x2)/(1+x1x2)]/[1-(x1+x2)/(1+x1x2)
=(x1x2+x1+x2)/(x1x2-x1-x2)
而(1+x1)(1+x2)/(1-x1)(1-x2)
=(1+x1x2+x1+x2)/(1+x1x2-x1-x2)
显然这个等式不成立,所以题目有错.