已知:正方形ABCD中,对角线AC、BD相交于点O,∠BAC的平分线AF交BD于点E,交BC于点F,求证:OE=12CF.

问题描述:

已知:正方形ABCD中,对角线AC、BD相交于点O,∠BAC的平分线AF交BD于点E,交BC于点F,
求证:OE=

1
2
CF.

证明:取AF的中点G,连接OG,
∵O、G分别是AC、AF的中点,
∴OG=

1
2
FC,OG∥FC(三角形的中位线平行于第三边,并且等于第三边的一半),
∵正方形ABCD,
∴∠OAB=∠ABO=∠OCB=45°,
∵AF平分∠BAC,
∴∠BAF=∠OAF=22.5°,
∴∠GEO=90°-22.5°=67.5°,
∵GO∥FC,
∴∠AOG=∠OCB=45°,
∴∠OGE=67.5°,
∴∠GEO=∠OGE,
∴GO=OE,
∴OE=
1
2
FC.
答案解析:取AF的中点G,连接OG,根据三角形的中位线得出OG=
1
2
FC,OG∥FC,根据正方形的性质求出∠OAB、∠ABO、∠OCB的度数,求出∠OEA和∠OGF的度数,推出OG=OE即可.
考试点:正方形的性质;平行线的性质;三角形的角平分线、中线和高;三角形内角和定理;等腰三角形的判定;三角形中位线定理.

知识点:本题主要考查对正方形的性质,三角形的内角和定理,三角形的中位线,等腰三角形的判定,平行线的性质,三角形的角平分线等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.