如图,O是正方形ABCD对角线的交点,AF平分∠BAC交BC于点F,交OB于E.求证OE=1/2CF

问题描述:

如图,O是正方形ABCD对角线的交点,AF平分∠BAC交BC于点F,交OB于E.求证OE=1/2CF

证明:取AF的中点G,连接OG,
∵O、G分别是AC、AF的中点,
∴OG=FC,OG∥FC,
∵正方形ABCD,
∴∠OAB=∠ABO=∠OCB=45°,
∵AF平分∠BAC,
∴∠BAF=∠OAF=22.5°,
∴∠GEO=67.5°,
∵GO∥FC,
∴∠AOG=∠OCB=45°,
∴∠OGE=67.5°,
∴∠GEO=∠OGE,
∴GO=OE,
∴OE=FC.
本题主要考查对正方形的性质,三角形的内角和定理,三角形的中位线,等腰三角形的判定,平行线的性质,三角形的角平分线等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.