设A为圆周上一定点,在圆周上等可能地任取一点与A连接,则弦长超过半径的概率为(  )A. 12B. 13C. 34D. 23

问题描述:

设A为圆周上一定点,在圆周上等可能地任取一点与A连接,则弦长超过半径的概率为(  )
A.

1
2

B.
1
3

C.
3
4

D.
2
3

在圆上其他位置任取一点B,设圆半径为R,
则B点位置所有情况对应的弧长为圆的周长2πR,
其中满足条件AB的长度大于等于半径长度的对应的弧长为

2
3
•2πR,
则AB弦的长度大于等于半径长度的概率P=
2
3
•2πrR
2πR
=
2
3

故选D.
答案解析:根据已知中A是圆上固定的一定点,在圆上其他位置任取一点B,连接A、B两点,它是一条弦,我们求出B点位置所有基本事件对应的弧长,及满足条件AB长大于半径的基本事件对应的弧长,代入几何概型概率计算公式,即可得到答案.
考试点:几何概型
知识点:本题考查的知识点是几何概型,其中根据已知条件计算出所有基本事件对应的几何量及满足条件的基本事件对应的几何量是解答的关