如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长为______.
问题描述:
如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=2
,BD=
2
,则AB的长为______.
3
答
由垂径定理得HD=
,由勾股定理得HB=1,
2
设圆O的半径为R,在Rt△ODH中,
则R2=(
)2+( R-1)2,由此得2R=3,
2
或由相交弦定理得(
)2=1×( 2R-1),由此得2R=3,
2
所以AB=3.
故答案为:3.
答案解析:根据垂径定理和相交弦定理求解.
考试点:相似三角形的判定与性质;勾股定理;垂径定理;圆周角定理.
知识点:本题主要考查:垂径定理、勾股定理或相交弦定理.是基础知识要熟练掌握.