答
设AB的中点为R,则R也是PQ的中点,设R的坐标为(x1,y1),则在Rt△ABP中,|AR|=|PR|.
又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x12 +y12).
又|AR|=|PR|=,所以有(x1-4)2+y12=36-(x12 +y12),即 x12 +y12-4x1-10=0.
因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.
设Q(x,y),因为R是PQ的中点,所以x1=,y1=,
代入方程 x12 +y12-4x1-10=0,得(
)2+(
)2−4•-10=0,
整理得:x2+y2=56,这就是所求的Q点的轨迹方程.
答案解析:设AB的中点为R,设R的坐标为(x1,y1),则在Rt△ABP中,|AR|=|PR|,在Rt△OAR中,|AR|2=|AO|2-|OR|2 =36-(x12 +y12),再由|AR|=|PR|=,由此得到点R的轨迹方程 x12 +y12-4x1-10=0①,设Q(x,y),因为R是PQ的中点,可得x1=,y1=,代入①化简即得所求.
考试点:轨迹方程.
知识点:本题主要考查利用“相关点代入法”求曲线的轨迹方程,利用平面几何的基本知识和两点间的距离公式建立线段AB中点R的轨迹方程.欲求Q的轨迹方程,应先求R的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题,属于难题.