如图,P为平行四边形ABCD的对角线BD上任意一点,过点P的直线交AD于点M,交BC于点N,交BA的延长线于点E,交DC的延长线于点F.求证:PE•PM=PF•PN.
问题描述:
如图,P为平行四边形ABCD的对角线BD上任意一点,过点P的直线交AD于点M,交BC于点N,交BA的延长线于点E,交DC的延长线于点F.
求证:PE•PM=PF•PN.
答
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴△BPE∽△DFP,
∴PE:PF=PB:PD,
∵AD∥BC,
∴△BPN∽△DPM,
∴PB:PD=PN:PM,
∴PE:PF=PN:PM,
即PE•PM=PF•PN.
答案解析:根据平行四边形的性质可知:AB∥CD,所以△BPE∽△DFP,同理可证△BPN∽△DPM,根据相似三角形的性质:对应边的比值相等可得到PE•PM=PF•PN.
考试点:相似三角形的判定与性质;平行四边形的性质.
知识点:本题考查了平行四边形的性质以及相似三角形的判定和性质,解题的关键是找到中间比值.