已知F1,F2为双曲线C;x²-y²=2的左右焦点,点P在C上,亅PF1亅=2亅PF2亅,则COS角F1PF2=?

问题描述:

已知F1,F2为双曲线C;x²-y²=2的左右焦点,点P在C上,亅PF1亅=2亅PF2亅,则COS角F1PF2=?

标准方程为:x²/2-y²/2=1|PF1|=2|PF2||PF1|-|PF2|=2a=|PF2|=2√2则|PF1|=4√2F1F2=2c=4由余弦定理:cos∠F1PF2=(|PF1|²+|PF2|²-F1F2²)/2|PF1||PF2|=(8+32-16)/32=3/4