设F1,F2为双曲线X^2/4-Y^2=1的两个焦点,点P在双曲线上,三角形f1pf2的面积为根号3,则pf1*pf2=

问题描述:

设F1,F2为双曲线X^2/4-Y^2=1的两个焦点,点P在双曲线上,三角形f1pf2的面积为根号3,则pf1*pf2=

由题易知,实轴长2a=4,焦距2c=2(根号5).设PF1=r1,PF2=r2,三角形面积为S,则依双曲线定义、余弦定理、面积公式,可列方程{|r1-r2|=2a,r1^2+r2^2-2r1r2cos60,S=1/2*r1r2*sin60} ==> S=b^2*cot(30)=根号3.