已知过原点O的一条直线与函数y=log(8)x的图像交于M,N两点,分别过M,N作y轴的平行线与函数y=log(2)x的图像交于P,Q两点,求证:点P,Q和原点O在同一条直线上
问题描述:
已知过原点O的一条直线与函数y=log(8)x的图像
交于M,N两点,分别过M,N作y轴的平行线与函数y=log(2)x的图像交于P,Q两点,求证:点P,Q和原点O在同一条直线上
答
y=log(8)x=1/3*log(2)x设直线方程为y=kx,与log(8)x交点(x1,kx1),(x2,kx2)kx1=log(8)x1,kx2=log(8)x2分别过M,N作y轴的平行线与函数y=log(2)x的图像交于P,Q则P,Q横坐标分别为x1,x2纵坐标分别为log(2)x1=3log(8)x1=3kx1...