xdy/dx=y+x^2 求通解

问题描述:

xdy/dx=y+x^2 求通解

∵[y+x²e^(-x)]dx-xdy=0 ==>ydx+x²e^(-x)dx=xdy ==>xdy-ydx=x²e^(-x)dx ==>(xdy-ydx)/x²=e^(-x)dx ==>d(y/x)=e^(-x)dx ==>y/x=C-e^(-x) (C是积分常数) ==>y=x[C-e^(-x)] ∴原方程的通解是y=x[C-e^(-x)] (C是积分常数)。

y = cx + 2x²