如图,直线AB与直线CD相交于点O,OE⊥AB,OF平分∠AOD,∠COE=28°.求∠AOC和∠DOF的度数.

问题描述:

如图,直线AB与直线CD相交于点O,OE⊥AB,OF平分∠AOD,∠COE=28°.求∠AOC和∠DOF的度数.

∵OE⊥AB,
∴∠BOE=90°,
∴∠BOC=∠BOE+∠COE=90°+28°=118°,
∴∠AOC=180°-∠BOC=180°-118°=62°;
∠AOD=∠BOC=118°,
又OF平分∠AOD,
∴∠DOF=

1
2
∠AOD=
1
2
×118°=59°.
答案解析:由已知可求出∠BOC=90°+28°=118°,再根据邻补角定义可求出∠AOC;根据对顶角相等可求出∠AOD=∠BOC=118°,再由OF平分∠AOD,可求出∠DOF的度数.
考试点:对顶角、邻补角;角平分线的定义;角的计算.
知识点:本题考查了对顶角、邻补角以及垂线的性质,是基础知识要熟练掌握.