如何用mathematica求递推表达式a[1 + n] == ( 2^(1 + n) (-1 + n - n/(-1 + 2^n)))/(-1 + 2^( 1 + n)) + ((-2 + 2^(-1 + n)) a[n])/(-1 + 2^(1 + n)),a[1] = 4/3

问题描述:

如何用mathematica求递推表达式
a[1 + n] == (
2^(1 + n) (-1 + n - n/(-1 + 2^n)))/(-1 + 2^(
1 + n)) + ((-2 + 2^(-1 + n)) a[n])/(-1 + 2^(1 + n)),a[1] = 4/3

a[n_Integer] = ((2^(1 + n) (-1 + n - n/(-1 + 2^n)))/(-1 + 2^(1 + n)) + ((-2 + 2^(-1 + n)) a[n])/(-1 + 2^(1 + n)) /.n -> n - 1);a[1] = 4/3;我是把a[1+n]的递推表达式换成a[n]的递推表达式定义了(就是把表达...