已知sin^3a+cos^3a=1求sin a+cos a和sin^4+cos^4的值

问题描述:

已知sin^3a+cos^3a=1
求sin a+cos a和sin^4+cos^4的值

sin^3a+cos^3a=(sina+cosa)(sin^2a+cos^2a-sinacosa)
=(sina+cosa)(1-sinacosa)=1.(1)
又(sina+cosa)^2=1+2sinacosa
设sina+cosa=x 则sinacosa=(x^2-1)/2.(2)
把(2)代入(1)得到
x[1-(x^2-1)/2]=1.(3)解出方程(3)
x=1或x=-2
很明显x=-2舍去
所以sin a+cos a=1 sinacosa=0
又 sin^4+cos^4=(sin^2a+cos^2a)^2-2sin^2acos^2a
=1