设正实数x,y,z满足x^2+y^2+z^2=1,求证x^2yz+y^2xz+z^2xy
问题描述:
设正实数x,y,z满足x^2+y^2+z^2=1,求证x^2yz+y^2xz+z^2xy
答
答:x,y,z>0,xy/z+yz/x≥2y(均值不等式)xy/z+xz/y≥2xyz/x+xz/y≥2z三式相加,xy/z+yz/x+xz/y≥x+y+z两边同乘以xyzx^2y^2+y^2z^2+x^2z^2≥x^2yz+y^2xz+z^2xy(xy+yz+xz)^2=x^2y^2+y^2z^2+x^2z^2+2(x^2yz+y^2xz+z^2xy...