求不定积分∫ 1/(r^2+h^2)^3/2 dr=?h为常数.

问题描述:

求不定积分∫ 1/(r^2+h^2)^3/2 dr=?h为常数.

令r=htant,原式=∫ 1/(h²tan²t+h²)^(3/2) d(htant)=(1/h²)∫cost dt=(1/h²)sint+Ctant=r/hsint=cost*tant=tant/sect=tant/√(1+tan²t)=r/√(h²+r²) + C故结果为r/[h²...