已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB交BC于E,求证:CT=BE.
问题描述:
已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB交BC于E,求证:CT=BE.
答
证明:过T作TF⊥AB于F,
∵AT平分∠BAC,∠ACB=90°,
∴CT=TF(角平分线上的点到角两边的距离相等),
∵∠ACB=90°,CM⊥AB,
∴∠ADM+∠DAM=90°,∠ATC+∠CAT=90°,
∵AT平分∠BAC,
∴∠DAM=∠CAT,
∴∠ADM=∠ATC,
∴∠CDT=∠CTD,
∴CD=CT,
又∵CT=TF(已证),
∴CD=TF,
∵CM⊥AB,DE∥AB,
∴∠CDE=90°,∠B=∠DEC,
在△CDE和△TFB中,
,
∠B=∠DEC ∠CDE=∠TFB=90° CD=TF
∴△CDE≌△TFB(AAS),
∴CE=TB,
∴CE-TE=TB-TE,
即CT=BE.
答案解析:过T作TF⊥AB于F,根据角平分线上的点到角的两边的距离相等得TF=CT,再根据角平分线的定义和等角的余角相等的性质得到∠CDT=∠CTD,所以CD=CT,再证明△CDE和△TFB全等,然后根据全等三角形对应边相等可以得到CE=TB,都减去TE即可得到CT=BE.
考试点:全等三角形的判定与性质.
知识点:本题主要考查角平分线的性质和全等三角形的判定以及全等三角形的性质,作辅助线构造全等三角形是解题的关键.