等比数列a1=1,a5=8a2,bn=an+n,求数列bn的前n项和.
问题描述:
等比数列a1=1,a5=8a2,bn=an+n,求数列bn的前n项和.
答
an=a1*q^(n-1)
=q^(n-1)
q^4=8q
q=0或q=2,这是等比数列 q=2
bn=2^(n-1)+n
Sn=2^0+2^1+...+2^(n-1)+n(1+n)/2
2Sn=2^1+2^2+...+2^(n-1)+2^n+n(n+1)
Sn=2Sn-Sn
=2^n+n(n+1)/2-2^0
=2^n+n(n+1)/2-1
答
设等比数列an的比为q
a1=1,a2=a1q=q
a5=a1q^4=q^4
a5=8a2=8a1q=8q
∴q^4=8q
∴q=2 an=a1q^(n-1)=2^(n-1)
bn=an+n=2^(n-1)+n
sn=b1+b2+b3+...+bn
=(1+1)+(2+2)+(4+3)+...2^(n-1)+n
=[1+2+4+...+2^(n-1)]+(1+2+3+...+n)
=(1-2^n)/(1-2)+(1+n)n/2=(n+n^2)/2-1+2^n