已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b).(1)求b+c的值;(2)若b=3,求这条抛物线的顶点坐标;(3)若b>3,过点P作直线PA⊥y轴,交y轴于点A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)

问题描述:

已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求这条抛物线的顶点坐标;
(3)若b>3,过点P作直线PA⊥y轴,交y轴于点A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)


答案解析:(1)因为抛物线y=x2+(b-1)x+c经过点P(-1,-2b),所以将点P代入解析式即可求得;
(2)因为b=3,所以求得c的值,即可求得抛物线的解析式,然后利用配方法求出顶点坐标;
(3)解此题的关键是首先确定函数的草图,即开口方向是向上,对称轴为x=

b−1
2
<−1,在y轴的左侧,根据题意确定点B的坐标;因为点P与点B关于对称轴对称,所以确定对称轴方程,从而求得b、c的值,求得函数解析式.
考试点:二次函数综合题.

知识点:此题考查了待定系数法求函数的解析式,考查了二次函数的对称性,解题的关键是要注意数形结合思想的应用.