过点A(-1,1)作直线l,使它被两平行线l1:x+2y-1=0和:x+2y-3=3所截得线段的中点恰好在直线l3:x-y-1=0上,求直线l的方程
问题描述:
过点A(-1,1)作直线l,使它被两平行线l1:x+2y-1=0和:x+2y-3=3所截得线段的中点恰好在直线l3:x-y-1=0上,
求直线l的方程
答
l:y-1=k(x+1)
y=k(x+1)+1
x+2y-1=0
x+2y-3=0
x+2(k(x+1)+1)-1=0
x+2kx+2k+2-1=0
x1=-(1+2k)/(1+2k)
x2=(1-2k)/(1+2k)
x=1/2(x1+x2)=1/2*(-4k)/(1+2k)=-2k/(1+2k)
y=x-1=-2k/(1+2k)-1=-(1+4k)/(1+2k)
-(1+4k)/(1+2k)=k(-2k/(1+2k)+1)+1
-1-4k=-2k^2+(k+1)(1+2k)
-1-4k=-2k^2+2k^2+3k+1
7k=-2
k=-2/7
y-1=-2/7(x+1)
答
中点在直线x-y-1=0上,满足y=x-1设该中点为(x0,x0-1)该中点到两条平行线的距离相等|x0+2(x0-1)-1|/√(1+4)=|x0+2(x0-1)-6|/√(1+4)|3x0-3|=|3x0-8|3x0-3=8-3x0x0=11/6所以,中点为(11/6,5/6)直线l斜率=(5/6-1)/(11/6...