已知正数数列{an}的前n项和为Sn,且对任意正整数n满足4Sn=(an+1)^2,且数列b1,b2-b1,b3-b2,...bn-bn-1是首项
问题描述:
已知正数数列{an}的前n项和为Sn,且对任意正整数n满足4Sn=(an+1)^2,且数列b1,b2-b1,b3-b2,...bn-bn-1是首项
为1,公比为1/2的等比数列.求证数列{an}为等差数列,求{bn}
答
由4Sn=(an+1)^2
得4S(n+1)=(a(n+1)+1)^2 两式相减
4a(n+1)=[a(n+1)+an+2]*[a(n+1)-an]
化简2(a(n+1)+an)=(a(n+1)+an)(a(n+1)-an)
因为{an}是 正项数列
所以a(n+1)-an=2 ,即数列是等差数列,公差是d=2.
在4Sn=(an+1)^2 中,令n=1 得到a1=1
所以an=1+2(n-1)=2n-1