已知bn=(a*n+a*-n)/2,求证:对任意正整数n,都有b1+b2+b3+……+b2n<4*n-(1/2)*n

问题描述:

已知bn=(a*n+a*-n)/2,求证:对任意正整数n,都有b1+b2+b3+……+b2n<4*n-(1/2)*n
注:*表示次方,另外:1<a<2
不好意思,还有一道,多谢啦!

用数学归纳法
bn=(a^n+1/a^n)/2=√(a^2n+1/a^2n+2)/2n=1时,b1=a^n/2+1/2a^n假设n=k时成立,则有:
b1+b2+b3+...+b2k当n=k+1时,∵ 1b1+b2+b3+b2k+b2(k+1)=3*4^k-(1/2)^k+(1/4)^k/8
∵ 4^(k+1)-(1/2)^(k+1)-[3*4^k-(1/2)^k+(1/4)^k/8
=4^k+(1/2)^k/2-(1/4)^k/8>0
所以,b1+b2+b3+...+b2k+b2(k+1)据数学归纳法,n=k+1时,不等式亦成立
所以,对任意正整数n,都有b1+b2+b3+……+b2n<4*n-(1/2)*n
得证.